ICML2025-MainTrack-Submission#280-AllReviewers
-
Table 1. Performance Comparison on Benchmark Datasets
Method CIFAR-10 (Acc %) CIFAR-100 (Acc %) TinyImageNet (Acc %) Params (M) FLOPs (G) ResNet-18 94.5 76.3 64.1 11.2 1.8 ViT-Small 95.2 77.9 65.7 21.7 4.6 Ours (GraphFormer) 96.1 79.5 67.3 19.8 3.9
Table 2. Ablation Study on Temporal Encoding
Method Variant CIFAR-10 (Acc %) TinyImageNet (Acc %) Ours (No Time Encoding) 95.4 66.1 Ours (Sinusoidal Only) 95.8 66.8 Ours (Learnable Time) 96.1 67.3
Table 3. Robustness to Input Noise on CIFAR-10 (% Accuracy)
Method No Noise Gaussian (σ=0.1) Gaussian (σ=0.3) FGSM (ε=0.1) ResNet-18 94.5 91.2 83.7 78.9 ViT-Small 95.2 92.4 85.1 80.3 Ours 96.1 93.5 87.0 83.7
Table 4. Generalization to Out-of-Distribution (OOD) Data
Method In-Domain (CIFAR-10) OOD (SVHN) OOD (CIFAR-10-C) ResNet-18 94.5 76.3 71.2 ViT-Small 95.2 78.1 73.0 Ours 96.1 80.5 75.3